Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A) lipids.B) proteins.C) carbohydrates.D) nucleic acids.		as biomolecules except			1) _	
E) All of the abov	e are biomolecu	les.				
2) Which functional gre A) amine	oup is least impo B) ester	ortant in biochemistry? C) hydroxyl	D) aromatic	E) amide	2) _	
11) uninc	b) ester	C) Hydroxyr	D) aromatic	L) annae		
3) The protein configur A) primary structu B) tertiary structu C) quaternary stru D) secondary stru E) none of the abo	ure. ire. acture. cture.	marily determined from i	nteractions between	n R groups is the	3) _	
4) All of the following	ara major functio	one of protoine except			4)	
A) All of the following A) transport of ne B) support for org C) protection again D) storage of ener E) control of bioch	cessary chemica gans or tissues. inst foreign subs gy.	ls. tances.			4) _	
5) Members of which c	lass of biomolec	ules are the building bloc	ks of proteins?		5) _	
A) fatty acidsB) glycerolsC) amino acidsD) monosaccharicE) nucleic acids	les					
6) The pentide bond io	ining amino acid	ls into proteins is a specif	ic example of the	bond.	6)	
A) amide	B) ester	C) glycosidic	D) carbonyl	E) hydrogen	· -	
7) Serum albumin is ar	example of a(a)	1)			7)	
A) enzyme. B) transport prote C) protective prot D) structural prote E) storage proteir	ein. ein. ein.	.,			·/ _	
8) Collagen is an exam	ple of a(an)				8)	
A) structural prote B) transport prote C) hormone. D) enzyme. E) storage proteir	ein. ein.				°/ _	

- 9) Insulin is an example of a(an)
 - A) enzyme.
 - B) transport protein.
 - C) hormone.
 - D) storage protein.
 - E) structural protein.
- 10) Which molecule is an alpha amino acid?

10) _____

A)

$$\begin{matrix} 0 & 0 \\ || & || \\ \text{HO-C-CH}_2\text{-C-NH}_2 \end{matrix}$$

B)

C)

D)

F١

- 11) The side chains or R groups of amino acids can be classified into each of the following categories **except**
- 11) _____

- A) basic.
- B) acidic.
- C) polar.
- D) non-polar.
- E) isoelectric.
- 12) Which category of amino acid contains R groups that are hydrophobic?

12) _____

- A) non-polar
- B) acidic
- C) basic and acidic
- D) basic
- E) polar
- 13) Which amino acid is a secondary amine with its nitrogen and the alpha-carbon joined as part of a ring structure?
- 13) _____

- A) proline
- B) arginine
- C) glycine
- D) lysine
- E) histidine

14) Non-polar R groups on amino acids are said to be because they are not attracted to water	14)
molecules.	·
A) hydrophobic	
B) hydrophilic	
C) unreactive	
D) ionized	
·	
E) none of these	
15) Polar R groups, along with acidic and basic R groups, are said to be because they are	15)
attracted to water molecules.	
A) ionized	
B) hydrophilic	
C) unreactive	
D) hydrophobic	
E) none of these	
E) Hone of these	
16) Two functional groups that are present in all amino acids are the group and the	16)
group.	
A) hydroxyl; amide	
B) carboxyl; phosphate ester	
C) acetal; amine	
D) carboxyl; amine	
E) carbonyl; amide	
E) carbony i, amac	
17) An amino acid whose R group is predominantly hydrocarbon would be classified as	17)
A) non-polar.	/
B) basic.	
C) isoelectric.	
D) acidic.	
E) polar.	
E) polar.	
18) Which amino acid is classified as neutral and non-polar?	18)
A) aspartic acid	
B) tyrosine	
C) phenylalanine	
D) lysine	
E) histidine	
19) Which amino acid is classified as basic?	19)
A) threonine	
B) valine	
C) glutamic acid	
D) phenylalanine	
E) lysine	
	20)
20) Amino acids found in proteins all have the following features.	20)
A) all are D– amino acids	
B) all are L-amino acids	
C) all are α -amino acids	
D) all are correct	
F) none are correct	

21	Which of t	hese amino	acids has a	a thiol g	roup as i	part of its	side chain?
41	, vvincii oi t	nese animo	acias mas a	i unoi 5	Toup as	part or its	side citairi:

21) _____

- A) threonine
- B) histidine
- C) methionine
- D) tyrosine
- E) cysteine

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

22) _____

(CH₃)₂-CH-CH₂-CH-COO⁻ | NH₃⁺

This question has four parts:

- a. For the amino acid shown above in zwitterion form, circle the carboxyl group, underline the amine group, label the alpha carbon, and draw a box around the R group.
- b. Write the name and abbreviation of your amino acid.
- c. Classify the amino acid as polar, non-polar, acidic, or basic. Explain the basis for your classification.
- d. Draw the structure of the amino acid at a pH well below its isoelectric point and well above its isoelectric point.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

23) Which structure represents a zwitterion?

23) _____

A)

B)

C)

D)

E)

24) The isoelectric point of an amino acid is

24) _____

- B) the pH equal to its pK_b.
- C) the pH equal to its pK_a .
- D) the pH at which it exists in the zwitterion form.
- E) the pH at which it exists in the acid form.

A) the pH at which it exists in the basic form.

25) An amino acid has the form shown at

- A) a pH greater than its isoelectric point.
- B) a pH less than its isoelectric point.
- C) any pH other than 7.0.
- D) its isoelectric point.
- E) a pH of 7.0.

25) _____

26) An amino acid will have the form shown at	26)
0	
R-CH-C-OH	
R-CH-C-OH NH ₃ +	
A) its isoelectric point.	
B) a pH greater than its isoelectric point.	
C) a pH of 7.0.	
D) any pH other than 7.0.	
E) a pH less than its isoelectric point.	
27) Proteins are least soluble in water	27)
A) at high pH	
B) at low pH	
C) at their isoelectric point	
D) at neutral pH	
E) at both high and low pH	
28) Which of the following objects is chiral?	28)
A) a fork	
B) a windowpane	
C) a nail	
D) a shoe	
E) a ping-pong ball	
20) 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20)
29) Which object is not chiral?	29)
A) a dog	
B) a clock	
C) a truck	
D) a thumbtack	
E) a boot	
30) Which amino acid is not chiral?	30)
A) arginine	,
B) cysteine	
C) glycine	
D) phenylalanine	
E) alanine	
31) Which molecule is chiral?	31)
A) CH ₂ Cl ₂	J1)
B) CH ₃ OH	
C) CH ₃ CH ₂ OH	
D) CHCl ₂ Br	

E) CHFClBr

	32) Enantiomers are a fe	orm of stereoisome	r in which each mole	ecule in the pair of isome	ers has	32)
	A) a plane of sym	metry perpendicul	lar to the carbon skel	eton so that the bottom	half and top half	-
	of the molecul	e are mirror image	S.			
	B) its functional g	groups situated in o	different configuration	ons with respect to a dou	ıble bond.	
			n different carbon ske			
	*	0 1		ups, but the functional	groups are	
	attached at dif		O		, 1	
			ferent groups and th	e isomers are mirror im	ages.	
CII		1 1 1	.1 . 1.	1		
SH	ORT ANSWER. Write the	word or phrase th	iat best completes ea	ich statement or answei	's the question.	
	33) List three properties different.	s of enantiomers th	at are the same and t	hree properties that are	33)	
MU	LTIPLE CHOICE. Choos	e the one alternativ	ve that best complet	es the statement or answ	vers the question	1.
	34) The amino acid sequ	-	s known as its			34)
	A) quaternary str					
	B) secondary stru					
	C) tertiary structi					
	D) primary struct					
	E) none of the ab	ove				
	35) The tripeptide repre	esented as ala-leu-	gly is named			35)
	A) alanine-leucir		0 7			′
	B) alanylglycylle					
	C) alanine-glycir					
	D) alanylleucylgl					
	E) none of these	J				
	36) The N-terminal am	ing acid in the non-	tido ala lou alv bic	pro ic		36)
	A) glycine.	B) proline.	C) leucine.	D) histidine.	E) alanine.	
	Ti) gryenie.	b) promie.	C) leachie.	D) Histianic.	L) alaimic.	
	37) The C-terminal ami	ino acid in the pept	ide ala-leu-gly-his-	pro is		37)
	A) histidine.	B) proline.	C) leucine.	D) alanine.	E) glycine.	, <u> </u>
	,	. •	•	,	, 0,	
	38) How many differen	t tripeptides can be	e formed from one m	olecule each of the amir	o acids tyrosine,	38)
	valine, and alanine?	•				
	A) 3	B) 12	C) 6	D) 9	E) 24	
	39) In the tetrapeptide <i>i</i>	Ala-Cvs-Val-I eu	the N-terminal amir	o acid is		39)
	A) Ala	. III Cy5- v III-LCU,	are iv cilimiai ailili			
	B) Val					
	C) Cys					
	D) Leu					
	E) none of the ab	ove				
	L) HOLK OF THE AD	0,0				

40) In the tetrapeptide Ala-Cys-Val-Leu, the C-terminal amino acid is	40)
A) Cys	
B) Ala	
C) Leu	
D) Val	
E) none of the above	
L) Hole of the above	
41) The two protein chains in insulin are held together by	41)
A) salt bridges	
B) hydrophobic interactions	
C) disulfide linkages	
D) hydrogen bonds	
E) all of the above	
42) All of the following are non-covalent interactions important in maintaining the secondary, tertiary,	42)
and quaternary aspects of amino acids except	4 2)
A) hydrogen bonding along the backbone.	
B) sulfur-sulfur bonds.	
C) hydrophobic interactions between R groups.	
D) hydrogen bonding between R groups.	
E) salt bridges between R groups.	
43) Which amino acid can form covalent sulfur-sulfur bonds?	43)
A) phenylalanine	<u></u>
B) cysteine	
C) glycine	
D) proline	
E) methionine	
44) Which pair of amino acids can have hydrophobic interactions?	44)
A) glutamic acid and serine	
B) glycine and asparagine	
C) aspartic acid and lysine	
D) leucine and alanine	
E) arginine and glutamic acid	
45) Which pair of amino acids can have ionic interactions?	45)
A) glutamic acid and serine	
B) glycine and asparagine	
C) leucine and alanine	
D) asparagine and lysine	
E) arginine and glutamic acid	
46) Which pair of amino acids can form hydrogen bonds between their R groups?	46)
A) arginine and glutamic acid	
B) glutamine and serine	
C) aspartic acid and lysine	
D) leucine and alanine	
E) glycine and asparagine	
, , , , , , , , , , , , , , , , , , , ,	

47) The beta-pleated sheet is an example of		47)	
A) secondary structure.			
B) quaternary structure.			
C) tertiary structure.			
D) primary structure.			
E) none of the above			
·			
48) The type of bond that is most important in maintaini	ng secondary structure of a r	protein is 48)	
A) hydrogen bonding between R groups.	ing secondary structure of a p	20)	
B) hydrophobic interactions.			
C) disulfide bridges.			
D) salt bridges.			
E) hydrogen bonding within the backbone.			
E) Hydrogen bonding within the backbone.			
40) All of the following are examples of fibrous mustains	over and	40)	
49) All of the following are examples of fibrous proteins	except	49)	
A) wool.			
B) insulin.			
C) skin.			
D) bones.			
E) fingernails.			
		=0)	
50) All of the following are globular proteins except		50)	
A) albumin.			
B) hemoglobin.			
C) immunoglobulin.			
D) ribonuclease.			
E) myosin.			
51) Which protein is considered to be a globular protein?		51)	
A) keratin B) myosin	C) collagen	D) albumin	
52) Which type of interaction is not directly involved in a	naintaining tertiary structur	re? 52)	
A) hydrogen bonding			
B) peptide bonds			
C) salt bridges			
D) hydrophobic interactions			
E) disulfide bridges			
53) All of the following are conjugated proteins except		53)	
A) myoglobin.			
B) casein.			
C) cytochrome oxidase.			
D) low-density lipoproteins.			
E) collagen.			

54) Proteins that consist of two or more chains assembled into a large 3-dimensional structure are said	54)
to display	
A) tertiary structure.	
B) secondary structure.	
C) primary structure.	
D) quaternary structure.	
E) none of the above	
55) When a protein is, its primary structure is destroyed, thus destroying the other aspects of	55)
its structure.	
A) denatured	
B) ionized	
C) esterified	
D) hydrolyzed	
E) polymerized	
56) When a protein is, its primary structure is maintained, but other aspects of its structure	56)
are disrupted.	
A) denatured	
B) esterified	
C) hydrolyzed	
D) polymerized	
E) ionized	
E) Ionized	
57) All of the following are examples of denaturing proteins except	57)
A) a mild sunburn.	
B) digestion of a meal.	
C) pounding meat to tenderize it.	
D) souring of milk.	
E) using a curling iron on your hair.	
58) All of the following can denature proteins without hydrolysis except	58)
A) lowering of pH.	
B) heat.	
C) mechanical stress.	
D) enzyme treatment.	
E) heavy metal ions.	
59) When a glycoprotein is hydrolyzed, the products would include	59)
A) amino acids plus RNA.	
B) amino acids plus metal ions.	
C) amino acids only.	
D) amino acids plus carbohydrates.	
E) amino acids plus lipids.	
T ANSWER. Write the word or phrase that best completes each statement or answers the question	
60) List three denaturing agents that can act on proteins and explain how each one disrupts thε 60) _ protein's structure.	

MATCHING. Choose the item in column 2 that best matches each item in column 1.

 $Match\ the\ following.$

61) hydrophobic	 A) a protein that is usually water soluble, having a hydrophilic exterior and 	61)
62) zwitterion	hydrophobic interior, and an overall rounded shape	62)
63) hydrophilic	B) a protein that produces only amino acids	63)
64) chiral carbon	upon hydrolysis	64)
65) globular protein	C) a protein that produces amino acids and other biomolecules or inorganic substances	65)
66) fibrous protein	upon hydrolysis	66)
67) conjugated protein	D) refers to R groups which form hydrogen bonds with water because of their polarity	67)
68) simple protein	E) the form of an amino acid in which both	68)
69) native protein	the carboxyl group and the amine group are charged, but the overall molecule remains neutral	69)
	F) a carbon atom bonded to four different groups and therefore able to form enantiomers	
	G) a protein with the tertiary structure in which it normally occurs in living systems	
	H) a protein that is usually insoluble in water, is very tough, and has a long shape	
	I) refers to R groups that do not interact readily with water because they are non-polar	

Answer Key

Testname: UNTITLED2

- 1) E
- 2) D
- 3) B
- 4) D
- 5) C
- 6) A
- 7) B
- 8) A
- 9) C
- 10) E
- 11) E
- 12) A
- 13) A
- 14) A
- 15) B
- 16) D
- 17) A
- 17) 11
- 18) C 19) E
- 20) C
- 20) C
- 21) E
- 22) Any amino acid may be drawn in. This question is answered for leucine.
 - a.

$$(CH_3)_2\text{-}CH\text{-}CH_2\text{-}CH\text{-}COO^-\\ |\\ \underline{NH_3}^+$$

- b. leucine, leu
- c. Leucine is non-polar because its R group is composed of hydrocarbons.
- d. Below its isoelectric point, leucine would be written as

(CH ₃) ₂ -CH-CH ₂ -CH-COOH	(CH ₃) ₂ -CH-CH ₂ -CH-COO
1	1
NH ₃ ⁺	NH_2
	111 77
low pH	high pH

- 23) A
- 24) D
- 25) A
- 26) E
- 27) C
- 28) D
- 29) D
- 30) C
- 31) E
- 32) E

Answer Key Testname: UNTITLED2

33) Same: molecular formula, connections between atoms, melting point, boiling point, water solubility, isoelectric point,
density
Different: interaction with plan-polarized light, reaction with other chiral molecules, placement of groups in space,
biological activity, odor, taste, other physiological interactions
34) D
35) D
36) E
37) B
38) C
39) A
40) C
41) C
42) B
43) B
44) D
45) E
46) B
47) A
48) E
49) B
50) E
51) D
52) B
53) E
54) D
55) D
56) A
57) B
58) D
59) D
60) 1. heat; affects weak interactions between R groups
2. mechanical stress; shifts R groups into different positions in relation to each other
3. detergents; affect hydrophobic interactions
4. organic compounds; affect hydrogen bonding or hydrophobic interactions
5. pH change; changes nature of acidic or basic R groups, thus changing their interactions; also can affect sulfur-sulfu
interactions and hydrogen bonding
6. metal ions; disrupt sulfur-sulfur interactions
61) I
62) E
63) D
64) F
65) A
66) H
67) C
68) B
69) G