MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) Which type of compound does not contain a carbonyl group?	1)
A) ketone	
B) aldehyde C) amine	
D) ester	
E) carboxylic acid	
2) Which functional group contains a carbonyl group and a hydroxyl group bonded to the same carbon atom?	2)
A) ester	
B) amide	
C) ketone	
D) aldehyde	
E) carboxylic acid	
3) Which functional group contains a carbonyl group and an ether linkage bonded to the same carbon	3)
atom?	
A) amide	
B) ketone	
C) carboxylic acid	
D) ester E) aldehyde	
E) alderly de	
4) One of the major differences between aldehydes and ketones as compared to other carbonyl compounds is that in aldehydes and ketones	4)
A) the carbonyl carbon has bond angles of 120°C, unlike the comparable bond angles in other carbonyl compounds.	
B) the polar carbon-oxygen bond is less reactive than the hydrocarbon portion of the molecule.	
C) the molar masses tend to be much smaller than in the other types of compounds.	
D) the carbonyl group carbon atom is bonded to atoms that do not attract electrons strongly	
E) none of the above	
5) The carbonyl group is	5)
A) found only in aldehydes and ketones.	3)
B) produced by reduction reactions of primary or secondary alcohols.	
C) a functional group in which carbon and oxygen are joined by a double bond.	
D) a general term for any functional group involving a carbon-oxygen bond.	
E) a functional group with a 6-membered ring where at least one atom is oxygen.	
6) All of the statements concerning the carbonyl group in aldehydes and ketones are true except	6)
A) The bond is polar, with a slight negative charge on the oxygen atom.	-/
B) The bond angles about the central carbon atom are 120°.	
C) Because the bond is polar, carbonyl groups readily form hydrogen bonds with each other.	
D) In condensed form the carbonyl group can be written as -CHO.	

E) The carbonyl group is planar.

A)

B)

C)

D)

E)

$$\begin{matrix} & & & \\ & & || \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_3 \end{matrix}$$

- 8) Which molecule is 2-butanone?
 - A)

B

C)

D)

 \mathbf{E}

8) _____

A)

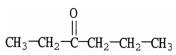
B)

C)

D)

E)

- 10) Which molecule is acetone?
 - A)


B

C)

D١

E)

11) Which is the correct systematic name for the molecule shown?

- A) ethyl methyl acetone
- B) methyl propyl ketone
- C) 4-hexanone
- D) propyl methyl ketone
- E) 3-hexanone

10) _____

A)

B)

C)

D)

E)

13) Which molecule is an aldehyde?

B)

C

D)

E)

- 14) The IUPAC name for acetone is
 - A) 2-propanone.
 - B) dimethyl ketone.
 - C) 1-propanone.
 - D) 3-propanal.
 - E) 2-propanal.

14) _____

15) The IUPAC name for dimethyl ketone is	15)
A) 3-propanal.	
B) 2-propanone.	
C) acetone. D) 1-propanone.	
E) 2-propanal.	
<i>2)</i> 2-propulai.	
16) The correct name for CH ₃ –CH(CH ₃)–CH ₂ –CHO is	16)
A) 3-methyl-1-butanone.	
B) 2-methylbutanal.	
C) 3-methylbutanal.	
D) isopentanal.	
E) 3-methyl-1-butanal.	
17) The correct name for CH ₃ -CH(CH ₃)-CH ₂ -CO-CH ₃ is	17)
A) isobutyl acetone.	
B) 2-methyl-4-butanone.	
C) 4-methyl-2-butanone.	
D) 4-methyl-2-pentanone.	
E) 2-methyl-4-pentanone.	
18) What is the IUPAC name of the compound shown?	18)
$\begin{array}{c c} O & CH_3 \\ \parallel & \parallel \\ CH_3CH_2-CH_2-C-CH-CH_3 \end{array}$	
CH ₃ CH ₂ —CH ₂ —CH—CH ₃	
A) 4-heptanone	
B) 2-methyl-3-hexanone	
C) 3-heptanone	
D) isopropyl n-propyl ketone	
E) 4-methyl-5-hexanone	
19) What is the IUPAC name of the compound shown?	19)
19) What is the 101 AC hame of the compound shown:	
O CH ₃	
$H-\ddot{C}-CH_2-\dot{C}H-CH_3$	
A) isopentanal	
B) 2-methyl-4-butanone	
C) 2-methyl-1-butanone	
D) 2-methylbutanal	
E) 3-methylbutanal	
20) Which of the following names does not fit a real compound?	20)
A) 3-octanone	- /
B) 2-butanone	
C) 3-methyl-3-pentanone	
D) all are correct	

E) 3-methyl-1-pentanone

21) Which of the following names does not fit a real compound?	21)
A) 3-ethylpentanal	
B) 4-methylpentanal	
C) all are correct	
D) ethanal	
E) 3-methyl-2-pentanal	
22) Which of the following is not a property of aldehydes and ketones?	22)
A) They cannot form hydrogen bonds with water because they have no hydrogen atoms bonded	
to oxygen.	
B) Most have distinctive odors.C) They have higher boiling points than alkanes of similar molar mass.	
D) They are polar.	
E) They have lower boiling points than alcohols of similar molar mass.	
23) All of the following are properties of acetone except	23)
A) flammable.	
B) intoxicating.	
C) solvent for organic substances.	
D) volatile.	
E) nutrient.	
24) Which of the following is a use of formaldehyde?	24)
A) flavoring	<u> </u>
B) preservative	
C) hormone	
D) solvent	
E) sweetener	
25) Which compound has the lowest boiling point?	25)
A) CH ₃ –CO–CH ₃	
B) CH ₃ -CHO	
C) CH ₃ CH ₂ OH	
D) CH ₃ -CH ₂ -CH ₂ -OH	
E) CH ₃ -CH ₂ -CHO	
26) Which compound has the highest boiling point?	26)
A) CH ₃ -CHO	
B) CH ₃ -CH ₂ -CHO	
C) CH3-CH2-OH	
, , ,	
D) CH ₃ -CO-CH ₃	
E) CH ₃ -CH ₂ -CH ₂ -OH	

27) Which compound has the **lowest** boiling point?

27) _____

- A) CH3-CH2-CHO
- B) CH₃--CH₂--CH₃
- C) CH3-CH2-CH2-OH
- D) CH₃--CH₂--CH₂--CH₃
- E) CH₃--CH₂--OH

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

28) Arrange the following compounds in order of increasing boiling point: acetone, n-butane, propanal, 1-propanol, 2-propanol. Explain the reasons for your arrangement.

28) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

29) All of the following are true concerning a two-carbon aldehyde except

29) _____

30) ____

- A) It has a higher boiling point than an alcohol of similar molecular weight. B) Its systematic name is ethanal.
- C) Its common name is acetaldehyde.
- D) Its condensed formula is CH₃-CHO.
- E) Its structural formula is: $\begin{array}{ccc} H & O \\ | & // \\ H C C \\ | & \\ H & H \end{array}$
- 30) All of the following are true concerning a three-carbon ketone **except**
- A) Its systematic name is propanone.
 - B) Another acceptable name is methyl ethyl ketone.
 - C) Its common name is acetone.
 - D) Its condensed formula is CH₃-CO-CH₃.
 - E) Its structural formula is: $\begin{array}{c|c} H & O & H \\ & | & | & | \\ H & C & C C H \\ & & | & | \\ H & & H \end{array}$
- 31) The common name of an industrial solvent used in many manufacturing processes is methyl ethyl ketone. The correct systematic name and structural formula of this compound are

 - E) none of these

32) Tollens' reagent is used to	32)
A) distinguish amines from aldehydes.	
B) distinguish aldehydes from ketones.	
C) reduce aldehydes.	
D) reduce ketones.	
E) oxidize ketones.	
33) Oxidation of an aldehyde produces a	33)
A) primary alcohol.	
B) secondary alcohol.	
C) carboxylic acid.	
D) ketone.	
E) tertiary alcohol.	
34) Oxidation of a ketone produces	34)
A) an aldehyde	
B) a carboxylic acid	
C) a primary alcohol	
D) a secondary alcohol	
E) no reaction	
35) All of the following statements about oxidation of carbonyls are true except	35)
A) Oxidation of ketones produces esters.	
B) Tollen's test involves reduction of Ag+.	
C) Oxidation of aldehydes produces carboxylic acids.	
D) Benedict's test involves reduction of Cu ² +.	
E) none of the above	
36) All of the following statements about oxidation of carbonyls are true except	36)
A) The Benedict's test involves reduction of Cu ²⁺ .	
B) Ketones do not react with mild oxidizing agents.	
C) The Tollens' test involves oxidation of Ag+.	
D) Oxidation of aldehydes produces carboxylic acids.	
E) All of the statements are true.	
37) Which compound will give a positive Tollen's test?	37)
A) pentanal	
B) 3-pentanone	
C) 2-pentanone	
D) pentanoic acid	
E) pentane	
38) Which observation denotes a positive Tollen's test?	38)
A) A silver wire dissolves.	
B) A brick-red precipitate forms.	
C) The light blue color of the reagent disappears.	
D) A silver deposit forms on the glass surface.	
E) Bubbles of oxygen gas are produced.	

39) Which observation denotes a	a positive Benedi	ct's test?			39)
A) A mirror-like deposit i	-				
B) A red precipitate forms					
C) A red-brown solution					
D) A pale yellow solution	with an odor of	chlorine changes t	to a purple color.		
E) A purple solution yield		-	• •		
, 1		•			
40) What is the product of oxida	ntion of butanal?				40)
A) butane					
B) 2-butanol					
C) 1-butanol					
D) butanoic acid					
E) no reaction					
41) What is the product of oxida	ntion of 2-butano	ne?			41)
A) butanoic acid					· -
B) butanal					
C) 2-butanol					
D) 1-butanol					
E) no reaction					
42) Which compound will give a	a positive Tollen'	s test?			42)
A)	1				′
OH					
$H - \dot{C} - CH_2 - CH_3$					
B) O					
O					
CH ₃ —C—H					
C)					
C) O					
CH2-C-CH2-CH2					
D)					
0					
Ĭ					
Н—С О—СН ₂ —СН ₃					
E)					
O 					
CH_3 — C — CH_3					
43) What is product of the oxida	ntion of a ketone?	ı			43)
A) an aldehyde					
B) a hemiacetal					
C) a carboxylic acid					
D) an alcohol					
E) none, ketones don't oxi	idize.				
44) What is the element that cau	ses oxidation in	the Tollens test for	r aldehydes?		44)
A) gold B) co	ppper (C) lead	D) silver	E) platinum	

45) Reduction of an aldehyde produces a	45)
A) tertiary alcohol.	
B) carboxylic acid.	
C) secondary alcohol.	
D) ketone.	
E) primary alcohol.	
46) Reduction of a ketone produces a(an)	46)
A) carboxylic acid.	
B) secondary alcohol.	
C) aldehyde.	
D) tertiary alcohol.	
E) primary alcohol.	
47) What is the product of reduction of butanal?	47)
A) butanoic acid	
B) butane	
C) 2-butanol	
D) 1-butanol	
E) no reaction	
48) What is the product of reduction of 2-butanone?	48)
A) butanal	
B) 1-butanol	
C) 2-butanol	
D) butanoic acid	
E) no reaction	
40) What is the same destroy of the majoration of 2 months of 2 months are 2	40)
49) What is the product of the reduction of 3-methyl-2-pentanone?	49)
A) 3-methyl-2-pentanal	
B) 2-methyl-3-pentanol C) 3-methyl-2-pentanol	
D) 3-methyl-2-pentanoi	
E) no reaction	
	
50) In biochemical reactions, reduction of carbonyl groups is carried out by	50)
A) H ₂ .	
B) lactic acid.	
C) NADH.	
D) pyruvic acid.	
E) NaBH ₄ .	
51) Reduction of aldehydes and ketones is a	51)
A) one–step reaction involving the H ⁻ ion.	
B) one–step reaction involving the H+ ion.	
C) two-step reaction involving the H ⁻ and OH ⁻ ions.	
D) two-step reaction involving the H ⁻ and H ⁺ ions.	
E) two-step reaction involving the OH ⁻ and H ⁺ ions.	

52) What reaction conditions are needed to cause formation of an acetal from the same reactants that	52)	
form hemiacetals?		
A) high temperature		
B) limited amount of alcohol as reactant		
C) metallic catalyst		
D) excess aldehyde or ketone as reactant		
E) acid catalyst		
53) The reverse reaction of acetal formation is	53)	
A) oxidation.		
B) combustion.		
C) hydrolysis.		
D) reduction.		
E) esterification.		
2) estermeunoru		
54) Which pair of compounds can react to form a hemiacetal?	54)	
A) CH ₃ CH ₂ CHO and CH ₃ CH ₂ OH		
B) CH ₃ CH ₂ CHO and CH ₃ COOH		
C) CH ₃ COCH ₃ and CH ₃ COOH		
D) CH ₃ COCH ₃ and CH ₃ CH ₂ CHO		
, c c c c		
E) CH ₃ COOH and CH ₃ CH ₂ OH		
55) A compound with an -OH group and an ether-like -OR group bonded to the same carbon atom is	55)	
A) an acetal.		
B) a hemiacetal.		
C) a simple ether.		
D) an aldol.		
E) a diol.		
56) A compound with two ether-like —OR groups bonded to the same carbon atom is	56)	
A) an aldol.		
B) a hemiacetal.		
C) a simple ether.		
D) an acetal.		
E) a diol.		
57) Hydrolysis of an acetal will produce	57)	
A) one aldehyde or ketone + two ethers.	<i></i>	
B) one aldehyde or ketone + two alcohols.		
C) one aldehyde or ketone + two waters.		
D) two aldehydes or ketones + one alcohol.		
E) two aldehydes or ketones + one ether.		
58) Since hemiacetals are unstable, they are seldom found in significant quantities in reaction mixtures.	58)	
An exception to this statement is the formation of hemiacetals		
A) in an acid-catalyzed reaction.		
B) in a base-catalyzed reaction.		
C) from aldehyde and alcohol groups within the same molecule.		
D) from carbonyl compounds and alcohols with different R groups.		
E) from carbonyl compounds and alcohols with identical R groups.		

MATCHING. Choose the item in column 2 that best matches each item in column 1.

Match the following.

59) methanal A) $\mathrm{CH_{3}\,CH_{2}\,CHOCH_{2}\,CH_{3}}$ 60) ketone 60) 61) propanone 61) B) a compound with a carbon atom that is bonded to two ether-like groups. 62) aldehyde C) a compound with a carbon atom that is 63) carbonyl bonded to both an alcohol-like group and an ether-like group. 64) an example of an aldol 64) D) a functional group consisting of a carbon 65) an example of an aldehyde group bonded to two other carbon atoms 66) an example of a ketone E) a functional group consisting of a carbonyl group bonded to one hydrogen atom and one carbon atom 67) hemiacetal F) a functional group consisting of a carbon 68) acetal atom with a double bond to an oxygen atom 69) an example of a hemiacetal G) 70) an example of an acetal 70) CH₃CH₂CHOCH₂CH₃ OCH₂CH₃ H) the simplest aldehyde, also named formaldehyde I) CH₃CH₂COCH₂CH₃ J) the simplest ketone, also named acetone K) CH3CH2CH2CH2CHO L) CH₃CH₂CHCH₂CH₂CHO

ÓН

Answer Key

Testname: UNTITLED2

- 1) C
- 2) E
- 3) D
- 4) D
- 5) C
- 6) C
- 7) A
- 8) C
- 9) E
- 10) D
- 10) E
- 12) A
- 13) D
- 14) A
- 17) 71
- 15) B
- 16) C
- 17) D
- 18) B
- 19) E
- 20) E
- 21) E
- 22) A
- 23) E
- 24) B
- 25) B
- 26) E
- 27) B
- 28) n-butane, propanal, acetone, 2-propanol, 3-propanol. (Students may reverse the placement of propanal and acetone. They are isomers, and text does not discuss differences in boiling points of aldehydes versus ketones.)

 Reasons: Molar masses are all similar, so that is not a major consideration. Thus the major considerations are polarity and hydrogen bonding. Butane is non-polar and has lowest bp. Acetone and propanal are polar, but do not form hydrogen bonds with themselves. The propanol isomers are polar and can form hydrogen bonds; the primary isomer can form stronger hydrogen bonds than the secondary isomer, so 1-propanol has the highest bp.
- 29) A
- 30) B
- 31) A
- 32) B
- 33) C
- 34) E
- 35) A 36) C
- 37) A
- 38) D
- 39) B
- 40) D
- 41) E 42) B
- 43) E
- 44) D
- 45) E

Answer Key Testname: UNTITLED2

- 46) B
- 47) D
- 48) C 49) C 50) C

- 51) D
- 52) E 53) C
- 54) A
- 55) B 56) D
- 57) B
- 58) C
- 59) H
- 60) D
- 61) J 62) E
- 63) F
- 64) L
- 65) K
- 66) I 67) C 68) B

- 69) A
- 70) G