Chapter 14

Some compounds with Oxygen, sulfur, or a Halogen: Alcohols, Phenols, Ethers, and Thiols

Structure and Classification of Alcohols14.3 Naming Alcohols, Phenols, and Thiols14.4 Some Important Alcohols and Phenols

Alcohols

- In an alcohol, a hydroxyl group (—OH) is attached to a carbon chain.
- In a phenol, a hydroxyl group (—OH) is attached to a benzene ring.

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Classification of Alcohols

- Alcohols are classified as primary, secondary, or tertiary.
- Classification is determined by the number of alkyl groups attached to the carbon bonded to the hydroxyl.

Learning Check

Classify each alcohol as 1) primary, 2) secondary, or 3) tertiary. OH A. _____CH___CH___CH___CH_3 B. CH_3 — CH_2 — CH_2 —OH

 $C. _HO-CH_2-CH_2-CH_2-CH_2-CH_3$

Solution

Classify each alcohol as 1) primary, 2) secondary, or 3) tertiary. OH A. 2 CH₃—CH—CH₂—CH₃ B. 1 CH₃—CH₂—CH₂—OH C. <u>1</u> HO $-CH_2-CH_2-CH_2-CH_2-CH_3$

Naming Alcohols

- The IUPAC system replaces the *-e* in the name of the alkane main chain with *-ol*.
- Common names for simple alcohols use the alkyl name followed by *alcohol*.
- CH₄ methane

CH₃OH methanol (methyl alcohol)

CH₃CH₃ethane

CH₃CH₂OH ethanol (ethyl alcohol)

Naming Alcohols

In the IUPAC names for longer chains, the chain is numbered from the end nearest the -OH group.

Learning Check

Name the following: CH₃—CH₂—CH₂—OH **A.** OH CH₃ CH₃—CH—CH—CH₂—CH₃ **B.** OH C.

Solution

Learning Check

Write the structure of each of the following: A. 3-pentanol

B. ethyl alcohol

C. 3-methylcyclohexanol

Solution

Write the structure of the following: A. 3-pentanol OH $CH_3 - CH_2 - CH_2 - CH_3$ **B.** ethyl alcohol CH₃—CH₂—OH OH C. 3-methylcyclohexanol CH2

14.5 Reactions of Alcohols

- Alcohols undergo combustion with O₂ to produce CO₂ and H₂O.
 - $2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O + Heat$
- Dehydration removes H- and -OH from *adjacent* carbon atoms by heating with an acid catalyst.
 H OH

Formation of Ethers

Ethers form when dehydration takes place at low temperature.

$\begin{array}{c} H^+\\ CH_3 &\longrightarrow CH_3 &\longrightarrow CH_3 &\longrightarrow CH_3 + H_2O\\ Two Methanol & Dimethyl ether\end{array}$

Oxidation and Reduction

- In organic chemistry, oxidation is a loss of hydrogen atoms or a gain of oxygen.
- In an oxidation, there is an increase in the number of C-O bonds.
- Reduction is a gain of hydrogen or a loss of oxygen. The number of C-O bonds decreases.

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Oxidation of Primary Alcohols

In the oxidation [O] of a primary alcohol, one H is lost from the –OH and another H from the carbon bonded to the OH.

Oxidation of Secondary Alcohols

The oxidation of a secondary alcohol removes one H from –OH and another H from the carbon bonded to the –OH.

Oxidation of Tertiary Alcohols

Tertiary alcohols are resistant to oxidation.

Learning Check

Select the product for the reaction of CH₃—CH₂—CH₂—OH with the following reagents:

A. H⁺, heat
B. [O]
C. O₂, spark

Solution

A. H^+ , heat B. [O]C. O_2 spark 1) CH_3 — $CH=CH_2$ 0 3) CH_3 — CH_2 —C—H2) $CO_2 + H_2O$

Ethanol CH₃CH₂OH

Ethanol:

- Acts as a depressant.
- Kills or disables more people than any other drug.
- Is metabolized at a rate of 12-15 mg/dL per hour by a social drinker.
- Is metabolized at a rate of 30 mg/dL per hour by an alcoholic.

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Oxidation of Alcohol in the Body

- Enzymes in the liver oxidize ethanol.
- The aldehyde produced impairs coordination.
- A blood alcohol level over 0.4% can be fatal.

$\begin{array}{c} O \\ \parallel \\ CH_3CH_2OH \longrightarrow CH_3CH \longrightarrow 2CO_2 + H_2O \\ Ethyl alcohol & acetaldehyde \end{array}$

Effect of Alcohol on the Body

Table 14.2 Typical Behaviors Exhibited by a 150-lb Person Consuming Alcohol

Number of Beers (12 oz) or Glasses of Wine (5 oz)	Blood Alcohol Level (w/v %)	Typical Behavior
1	0.025	Slightly dizzy, talkative
2	0.05	Euphoria, loud talking, and laughing
4	0.10	Loss of inhibition, loss of coordination, drowsiness, legally drunk in most states
8	0.20	Intoxicated, quick to anger, exaggerated emotions
12	0.30	Unconscious
16–20	0.40-0.50	Coma and death

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Alcohol Contents in Common Products

% Ethanol	P
50%	V
40%	F
15-25%	Ι
12%	V
3-9%	B

Product Whiskey, rum, brandy Flavoring extracts Listerine, Nyquil, Scope Wine, Dristan, Cepacol Beer, Lavoris

14.6 Phenols

- A phenol is a benzene ring with a hydroxyl group.
- For two substituents, assign C-1 to the carbon attached to the –OH.
- Number the ring to give the lowest numbers.
- The prefixes *o*, *m*, and *p* are used for common names.

Examples of Phenols

Phenols in Medicine

 Many phenols are used as antiseptics and disinfectants.

Derivatives of Phenol

 Compounds of phenol are the active ingredients in the essential oils of cloves, vanilla, nutmeg, and mint.

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

14.7 Acidity of Alcohols and Phenols

■Alcohols and phenols are weakly acidic. They dissociate slightly in aqueous solution and establish equilibria between neutral and anionic forms. CH₃CH₂OH $\stackrel{\text{Dissolve in}}{\underset{\text{water}}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^+}{\overset{\text{OH}_2\text{O}^-}{\overset{\text{OH}_2\text{O}^+}}{\overset{\text{OH}_2\text{O}^+}{\overset{\text{OH}_2\text{O}^+}}{\overset{\text{OH}_2\text{O}^+}{\overset{\text{OH}_2\text{O}^+}{\overset{\text{OH}_2\text{O}^+}{\overset{\text{OH}_2\text{O}^+}{\overset{\text{OH}_2\text{O}^+}{\overset{\text{OH}_2\text{O}^+}}{\overset{\text{OH}_2\text{O}^+}}{\overset{\text{OH}_2\text{O}^+}}{\overset{\text{OH}_2\text{O}^+}{\overset{\text{OH}_2\text{O}^+}}}}}}}$

 $\bigcup_{\text{water}} O^{-} + H_3O^{-}$

A phenol

Alcohols are about as acidic as water. K_a values near 10⁻¹⁵. Thus, an alkoxide ion (RO⁻) is as strong a base as hydroxide, HO^{-,} ion.

•Phenols are considerably more acidic than water. K_a value 1.0 x 10⁻¹⁰.

14.8 Ethers

- Ethers contain an -O- between two carbon groups.
- Simple ethers are named by listing the alkyl names in alphabetical order followed by *ether*.

• An –OR group is known as an alkoxy group. -OCH₃ is a methoxy, -OCH₂CH₃ is a ethoxy group, and so on. These names are used when the ether functional group is present in a compound that also has other functional groups.

IUPAC Names for Ethers

In the IUPAC system, the shorter alkyl group and the oxygen are named as an alkoxy group attached to the longer alkane.

Numbering the longer alkane gives

1-methoxypropane.

Learning Check

Name each of the following compounds: A. CH₃—CH₂—O—CH₂—CH₃

CH₃ | B. CH₃—CH₂—CH₂—CH₂—OH

C. CH₃—CH₂—CH₂—SH

Solution

Name each of the following compounds: A. CH₃—CH₂—O—CH₂—CH₃ Diethyl ether or ethoxyethane (IUPAC) CH₃ B. CH₃—CH₂—CH₂—CH₂—CH₂—OH <u>3-Methyl-1-pentanol</u>

C. CH₃—CH₂—CH₂—SH 1-Propanethiol

Learning Check

Draw the structure of each compound. A. 2-Butanethiol

- **B.** Ethyl methyl ether
- C. 2-Methyl-1-butanol

Solution

Draw the structure of each compound. A. 2-Butanethiol SH CH₃-CH-CH₂-CH₃

- B. Ethyl methyl ether CH₃—CH₂—O—CH₃
- C. 2-Methyl-1-butanol

CH₃ | HO—CH₂—CH—CH₂—CH₃

Boiling Points of Alcohols

- Alcohols contain a strongly electronegative O in the OH groups.
- Thus, hydrogen bonds form between alcohol molecules.
- Hydrogen bonds contribute to higher boiling points for alcohols compared to alkanes and ethers of similar mass.

Boiling Points of Ethers

- Ethers have an O atom, but there is no H attached.
- Thus, hydrogen bonds cannot form between ether molecules.

Dimethyl ether

Solubility of Alcohols and Ethers in Water

- Alcohols and ethers are more soluble in water than alkanes because the oxygen atom can hydrogen bond with water.
- Alcohols with 1-4 C atoms are soluble, but alcohols with 5 or more C atoms are not.

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

14.9 Thiols

- Thiols are carbon compounds that contain the –SH group.
- In the IUPAC name, thiol is added to the alkane name of the longest carbon chain.

Naming Thiols

In thiols with long carbon chains, the chain is number to locate the -SH group.

Thiols in Nature

- Thiols:
- Often have strong or disagreeable odors.
- Are used to detect gas leaks.
- Are found in onions, oysters, and garlic.

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

14.10 Halogen Containing Compounds

- Akyl halide (RX): The simplest halogen containing compounds. In alkyl halides, an alkyl group is bonded to a halogen atom.
- The common names of alkyl halides are formed by giving the name of the alkyl group followed by the halogen name with an –ide ending. Examples, CH₃Br – methyl bromide; CH₃CH₂I – Ethyl iodide

Systematic names are obtained by considering the halogen atom as a substituent on a parent alkane. The parent alkane is named by selecting the longest chain and numbering from the end nearer the first substituent, either halogen or alkyl.

Halogenated organic compounds are used as
Anesthesia. For example, halothane is an important anesthetic.

insecticides

Solvents

Feed stock in chemical industries

Chapter Summary

- Alcohols has, R-OH, –OH group attached to a saturated alkane-like carbon atom.
- Phenols, Ph-OH, has –OH group attached to an aromatic ring.
- Thiols are sulfur analog of alcohols, R-SH.
- Alkyl halides contain a halogen atom bonded to an alkyl group.
- Alcohols are named using the –ol ending, and phenols are named using the phenol ending.

Chapter Summary Contd.

- Ethers are named by identifying the two organic groups attached to oxygen, followed by the word ether.
- Thiols use the name ending –thiol.
- Alkyl halides are named as halogen substituted alkane.
- Alcohols and phenols are polar, they are capable of participating in hydrogen bonding.

Chapter Summary Contd.

- Solubility of alcohols in water decreases as the size of the organic group increases.
- Ethers do not hydrogen bond, and more like alkane in their properties.
- Alcohols and phenols are weak acids.
 Alcohols are similar to water in acidity; phenols are more acidic than water.
- Alcohols undergo dehydration reaction (loss of water) to yield alkene when treated with a strong acid.

Chapter Summary Contd.

- Alcohols undergo oxidation reaction to yield carbonyl (C=O) group containing product.
- Oxidation of primary alcohols produce either aldehyde (RCH=O) or carboxylic acid (RCO₂H), depending on the reaction conditions.
- Oxidation of secondary alcohols produce ketones (RCH=O).
- Tertiary alcohols generally does not participate in oxidation reactions.

End of Chapter 14